如果在不计成本并且技术达标的情🂿🔤况下,内存(ra)和存储(ro)是完可💚以统一存在的。
内存(ra)的优点是很多,例如读🅇🄘写速度快,能够迅速和cpu交换数据,存储单元的内容😨可按需随意取出或存入,存取的速度与存储单元的位置无关。
但是缺点🆞🐫也很明显,最主要的一点就是断电后数据自动丢失。另外🐀☜⛳就是成本高,技术难度大等。
三星这一次涨价后,整个夏国的手机生产商集体噤声默默接🕤受就反应除了夏国在内存制造上的技术空白。
存储ro的优点和内存(r🔸🅕🆛a)就不同了,在计算机的运行中,存储就是一个大仓库,存储🟑数据量大,不会因为断电而丢失,性能稳定。但是缺点也显而易见,速度慢,性能随着读取次数的增加而降低。
无论是存储还是内存,其实对数据存储的基本原理都是🆪💓相💭🕉🇱同的🙅🇾
都是存储“0和“1”🐠🁎,数据的本质也🄶🂄🌎是用“0”和“1”去表示。
而在存储类型之中,固态硬盘是通过高低电平两种状态来存储“0”和“1”,读写时在电流的作用下改变高低电平来记录数据的增加或减少;机械硬盘则是改变内部磁粒的方向来代表“🏅0☲🃒🗎”和“1”,读写时则是用读写的磁力改变磁粒子的方向来记录数据的增加或减少。
而内存中,数据的表达形式也是在通电状态下用电子🝖状态表达“0”和“1”。
在上述原理的🔻🅴基础上,能够制造出量子芯片的盘古科技对内存和存🐀☜⛳储的设计制💚造几乎是信手拈来。
萧铭还给实验组的一个🐠🁎一个初步的设想,不要像传统pc或者手机端那样,在材料上完界定内存和存储之间的限制。
在微核电池始终通电的情况下,以碳化硅为半导体材料的存储🙅🇾介质可以让内存和存储都有革命性的创新。
碳化硅半导体材料,在其中雕蚀色心之后,色心的功能除了一颗💈🏴以存储自旋电子,以自旋电子三种状态做运算,成为量子芯片以外,还可以时刻让色心中转载或者空载电子,以此来记录数据。
萧🐰铭有一个大胆的设想要是🔸🅕🆛用自旋电子的叠加态记录数据,这将是一项伟大的创🆏🎥📋举。
自旋电子的叠加状态可以记录的数🂿🔤据量远💏远超过了传统的硬盘。
设想非常美好,但是该技术拥有个重🅇🄘大的缺陷。